Fitting Data to a Straight Line

Dr. Darrel Smith

Department of Physics \mathcal{G} Astronomy
Embry-Riddle Aeronautical University
Prescott, AZ 86301
(Dated: 5 February 2015)
This note describes how to fit a straight line to data exhibiting a linear trend in y vs. x. The $x-y$ coordinates for the data points, along with their respective error bars are analyzed using a linear regression fit to a straight line (i.e., $y=a+b x$).

I. INTRODUCTION

The following describes a procedure for fitting a straight line to data containing error bars. An example is shown below where a straight line $(y=a+b x)$ is fit a a data set x_{i}, y_{i}, σ_{i} where σ_{i} is the distance between the data point and the end of the error bar. The fitting procedure described below is used to fit data where the error bars can vary from one data point to the next. The fitting procedure is used to determine the following quantities:

$$
\begin{aligned}
& a=\text { the } y \text { intercept } \\
& \sigma_{a}=\text { the uncertainty in the } y \text { intercept } \\
& b=\text { the slope, and } \\
& \sigma_{b}=\text { the uncertainty in the slope }
\end{aligned}
$$

Assume we have 5 data points that display a linear trend as shown in Fig. 1 below. The error bars extend above and below the measured value y_{i} by the measured uncertainty $\pm 1 \sigma_{i}$.

FIG. 1. Fitting five data points using a straight line fit. In general, the error bars can be different for each measurement.

II. CALCULATIONS

The four parameters a, σ_{a}, b, and σ_{b} are calculated using the following equations:

$$
\begin{gathered}
a=\frac{1}{\Delta}\left|\begin{array}{cc}
\sum \frac{y_{i}}{\sigma_{i}^{2}} & \sum \frac{x_{i}}{\sigma_{i}^{2}} \\
\sum \frac{x_{i} y_{i}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}}
\end{array}\right| \\
b=\frac{1}{\Delta}\left|\begin{array}{cc}
\sum \frac{1}{\sigma_{i}^{2}} & \sum \frac{y_{i}}{\sigma_{i}^{2}} \\
\sum \frac{x_{i}}{\sigma_{i}^{2}} & \sum \frac{x_{i} y_{i}}{\sigma_{i}^{2}}
\end{array}\right| \\
\sigma_{a}^{2}=\frac{1}{\Delta} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \quad \sigma_{b}^{2}=\frac{1}{\Delta} \sum \frac{1}{\sigma_{i}^{2}} \\
\Delta=\sum \frac{1}{\sigma_{i}^{2}} \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}}-\left(\sum \frac{x_{i}}{\sigma_{i}^{2}}\right)^{2}
\end{gathered}
$$

where the sum \sum is over the index i from $i=1, \operatorname{lots} N$ and N is the number of data points.

It's a bit cumbersome to keep writing these equations in a Mathematica program; however, one of our students, Ian Brubaker (Spring 2015) wrote a Mathematica package called DetFit. You can go to my website /physicsx/ to get a copy of Ian's DetFit module.

1. Download the Mathematica package DetFit5.m
2. In Mathematica, use the File->Install command to install DetFit5.m. You only have to do this operation once.
3. Somewhere near the beginning of your Mathematica program, include the following statement: Get["DetFit5'"] to load the DetFit package.
4. To use the DetFit package in your Mathematica program, use the function $\operatorname{DetFit}[\mathrm{x}, \mathrm{y}, \sigma]$ where x and y are separate lists of the (x, y) coordinates of your data points, and σ is a list of the error bars. All three lists should be the same length.
5. There is a test program, test program.nb, that you can download to see how this program is used to fit 8 data points, each with a different error bar.

Enjoy !!

